15.3 POPULATION DYNAMICS

Populations have characteristic pattern of increase which are called population growth form Populations have characteristic pattern of increase with forms represent the interaction of biotic potential and environmental resistance. Such growth forms represent the interaction of blotte P

The study of population dynamics is done by three approaches (1) mathematical models (2) laboratory studies and (3) field studies. The growth is the most fundamental dynamic feature that a species population displays

The growth is the most fundamental dynamic The growth of the population. When Populations characteristically increase in size in a sigmoid, S-shaped or logistic fashion. When Populations characteristically increase in size in a sign a few organisms are introduced into an unoccupied area, the growth of the population is at first a few organisms are introduced into an unoccupied area, the growth of the population is at first a few organisms are introduced into an unoccupied area, the growth of the population is at first and the sign area. slow (positive acceleration phase), then becomes very rapid (logarithmic phase) and finally slows down as the environmental resistance increases (the negative acceleration phase) until an equilibrium level is reached around which the population size fluctuates more or less irregularly according to the constancy or variability of given environment. The level beyond which no major increase can occur represents the saturation level or carrying capacity. The carrying capacity or equilibrium density is represented by the letter K. It is often useful to define the maximum rate of growth of the population. This parameter, generally termed the intrinsic rate of natural increase, is symbolised r_0 and represents the growth rate of a population that is infinitely small. Accordingly such type of population growth can be described by following ogistic equation:

 $dN/dt = r_0 N (K - N) / K$

Population Ecology 181.

Population Ecology 181.

Population Ecology 181.

Population Size and K = highest population density that can be maintainedinnate capacity.

Formulation to increase (birth rate without resource limitation), NFormulation size and K = highest population density that can be maintained in real environment,

Formulation size and K = highest population density that can be maintained in real environment,

Formulation size and K = highest population density that can be maintained in real environment, arrying capacity.

there are two main types of population growth forms. (1) J-shaped and (2) S-shaped or the forms (Fig. 15.8). The growth forms are due to the not There are two limit growth forms. (1) J-shaped and (2) S-shaped or limit conditions. In limit limit are there is a

onmental conditions. In hishaped curve there is a ling increase in density with passage of time (called offenential growth). The when plotted guinst time give a J-shaped powth curve and at the peak population growth ceases thruptly due to environmental psistance. For example, the population growth curve human populations and growth of yeast, Drosophila and rabbit under laboratory

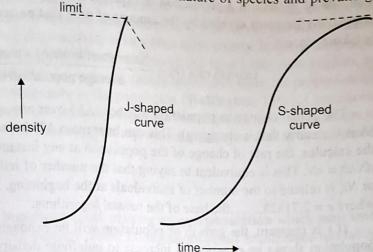


Fig. 15.8. J-shaped and S-shaped population growth curves.

and rapple day an initial slow rate and then it accelerates and finally slows giving the growth which is **sigmoid** or **S-shaped**. The peak constant level represented by K or upper level (called asymptote) of the sigmoid curve is called the maximum carrying capacity. It marks the limit to which the environment can support the population.

Plant Population Dynamics

In many respects, plant populations behave like the animal population, but, they have some mique features such as follows: Most higher plants are modular organisms, developing from a single zygote but producing an indeterminate number of repetitive structures, called modules vegetatively. A clump of herbs, grasses or trees may be product of one zygote. Plants cannot move to mate or disperse. Thus, they have evolved means as gravity, wind, water flow or animals for dispersal of pollen, seed, vegetative parts, etc. The seed population present in the soil for different species are referred to as seed bank or seed pool (Silvertown, 1987). All these seeds do not germinate or all the seedlings do not establish. Some die due to environmental stresses and this is called environmental sieve which allows only the stronger individuals to survive. In most cases, the seeds germinate in batches and seedlings of one lot is known as whort. In this way, from a huge seed bank through ecological selection, cohorts are formed and these in turn result into adult population. This process is referred to as recruitment. Further, a plant may originate from a vegetative part, called ramete (or tiller) or from seed called genet. Thus, ramete and genet form two levels of population structure. The term clone is normally used to designate the population derived from ramete of the same parent plant.

The 3/2 thinning law. Most aspects of growth of population are density related. One important generalisation applied is 3/2 thinning law. If we plot the relationship between the dy weight and density of shoots (known number of individuals of) in plant population, the line relating weight of each individual to density has a slope of -1.5 (or -3/2). The slope would be i, if increasing density has been exactly compensated by reduction in weight of individuals. hinning is normally inversely density dependent, but does not always occur if the growth of the plants is extremely plastic. The 3/2 is universal and applied well in a wide variety of the plants is extremely plastic. The 3/2 is universal and applied well in a wide variety of the plants is extremely plastic. The 3/2 is universal and applied well in a wide variety of the plants is extremely plastic.

Growth Rate of Population

The rate of growth of a population is expressed as the number of individuals by Which which which the passes while this population is expressed as the number of individuals by Which which the passes while this population is expressed as the number of individuals by Which which the passes while this population is expressed as the number of individuals by Which the passes while this population is expressed as the number of individuals by Which the passes while this population is expressed as the number of individuals by Which the passes while the The rate of growth of a population is expressed population increases divided by the amount of time that passes while this population increases

Growth rate
$$(r) = \frac{\text{Number of birth}(b) - \text{number of deaths }(d)}{\text{average population time internval}}$$

The actual change in population number (ΔN) over any span of time (Δt) is equal to (Δ is the entity that is changing). This can be written $\Delta N/\Delta t = rN$ or, using the symbology the calculus, the rate of change of the population at any instant time (dN/dt) can be express dN/dt = rN. This is equivalent to saying that the number of individuals at any arbitrary time or Nt, is related to the number of individuals at the beginning, N_0 , by the equation $N_1 = N_0$ where e = 2.71828...., the base of the natural logarithms.

If r is constant, the growth of population will be exponential. If r is positive (b>d), population shows an exponential increase to indefinite density and if r is negative (b < d)shows an exponential decay to extinction. It is impossible for a population to change at a exponential rate indefinitely. However, there are many cases in which conditions are such that b is substantially larger than d for a period of time, following which conditions changes that d becomes much larger than b. The responses of populations to variations of this sort an exponential "population explosion" during favourable conditions, followed by a "crash when conditions change. Diatom populations in Lake Michigan, USA, for example, under such exponential increases at different times of years, triggered by variations in abiotic factor within the lake, followed by equally rapid declines.