15.3 POPULATION DYNAMICS
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piant Population Dynamics

[ many respects, plant populations beh-a\'e like the animal population, but, they have some
nique features such as follows : Most higher plants are modular organisms, developing from
ssingle Zygote but producing an indeterminate number of repetitive structures, called modules
yegetatively. A clump of herbs, grasses or trees may be product of one zygote. Plants cannot
qove to mate or disperse. Thus, they have evolved means as gravity, wind, water flow or -
simals for dispersal of pollen, seed, vegetative parts, etc. The seed population present in the
«il for different species are referred to as seed bank or seed pool (Silvertown, 1987). All these
geds do not germinate or all the seedlings do not establish. Some die due to environmental
wresses and this is called environmental sieve which allows only the stronger individuals to
anvive. In most cases, the seeds germinate in batches and seedlings of one lot is known as
whort. In this way, from a huge seed bank through ecological selection, cohorts are formed and
these in turn result into adult population. This process is referred to as recruitment. Further, a
dlant may originate from a vegetative part, called ramete (or tiller) or from seed called genet.
Thus, ramete and genet form two levels of population structure. The term clone is normally
sed to designate the population derived from ramete of the same parent plant.

~ The 3/2 thinning law. Most aspects of growth of population are density related. One
““E’O“i_mt generalisation applied is 3/2 thinning Jaw. If we plot the relationship l?etween the
il “eight and density of shoots (known qumber of individuals of) in plant population, the line
Y af“‘.g weight of each individual to density has a slope of —1.5 (or — 3/2). The slope would be
' if Icreasing density has been exactly compensated by reduction in weight of individﬁﬁi’s?
Ming is normally inversely density dependent, but does not always occur if the growth of




- Botany for B.Sc. Students

the plants is extremely plastic. The 3/2 is universal and applied well in 5 Wide |
from mosses to trees. Exact reason of its occurrence is still not clear, h el_\ 0f

Growth Rate of Population

The rate of growth of a population is expressed as the number of Individyg]q by
population increases divided by the amount of time that passes while thig POpulat
1s taking place:

Number of birth(b) — number of deaths (d)
average population time internyg|

Growth rate (r) =

The actual change in population number (AN) over any span of time (A) i .. ]

(A is the entity that is changing). This can be written AN/A # = rN or, using the Sy 1
the calculus, the rate of change of the population at any instant time (dN/a’z) can he

dN/dt = rN. This is equivalent to saying that the number of individuals at any arh i

or Nz, is related to the number of individuals at the beginning, Ny, by the equano \ {
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whcre e — 2. 71828 . 520 7 ,the base of the natural logarithms.

If 7 1s constant, the growth of population will be exponential. If r is positive (/
population shows an exponential increase to indefinite density and if » is negati
shows an exponential decay to extinction. It 1s impossible for a population to ch.
exponential rate indefinitely. However, there are many cases in which conditions
that b is substantially larger than d for a period of time, following which conditions
that d becomes much larger than 4. The responses of populations to variations of th
an exponential “population explosion” during favourable conditions, followed by a “crad

when conditions change. Diatom populations in Lake Michigan, USA, for example. u e
such exponential increases at different times of years, triggered by variations in abiotic 1
within the lake, followed by equally rapid declines. 1
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